

Аэроэлектроразведка. Лекция VI

Аэроэлектроразведка глазами разработчика

geotechnologies-rus.com

Аэроэлектроразведка. Лекция VI

Аэроэлектроразведка глазами разработчика

Е.В. Каршаков

СОДЕРЖАНИЕ

- 1. История: дополнительные сведения
- 2. Особенности обработки сигналов:
 - чувствительность, стабильность, надежность
- 3. Альтернативный подход к эффекту ИВП: обработка данных в частотной области

История

Fountain, D. 60 years of AEM — focus on the last decade // 5th International Conference on Airborne Electromagnetics, Porvoo, Finland, 2008, – P. 1–8

История: 1948 г.

Fountain, D. Airborne electromagnetic systems — 50 years of development // Exploration Geophysics, 1998, 29. – P. 1–11

История: ХХ век

Светов, Б.С., Каменецкий, Ф.М. Аппаратура для индуктивной аэроэлектроразведки / Электроразведка: Справочник геофизика. М., Недра, 1979. – С. 161–168

Параметр	БДК-70	Turair	ВМП	ABEM _{RMF}	ДИП-АД	F(H)-400	дип-жк	TRIDEM	АМПП-2	INPUT
Страна	CCCP	Canada	СССР	Sweden	СССР	Canada	CCCP	Canada	СССР	Canada
Метод	БДК	ΗΠ	дип	дип	дип	дип	дип	дип	дип	дип
Сигнал	гармонический								«неустановившийся»	
ЛА	FW, RW	RW	2xFW, 1FW		FW, RW		FW		RW	FW
Источник	кабель	ГП	ВП+	·ГП	ГП	ГД	ГД		ГП	
Приемник	BP	2ГР (2ВР)	BP+	-ГР	ВР+ГР	ГР	ГР		ГР	ГР+ВР
Част./Вр.	81—976 Гц	200-800 Гц	612-2450 Гц	800 Гц	312, 2500 Гц	340, 1070 Гц	625, 5000 Гц	500-8000 Гц	125 Гц, 0,5–3 мс	288 Гц, 0,3–1,9 мс
# каналов	2	?	1	1	2	2	1	3	3	6
Изм.	$ H_x , \phi_x$	$ H^{}_2 / H^{}_1 ,\Delta\phi$	$ C , \Delta \phi$	Im C, Re C	H _b , H _a	Im H _z	H _x , Im H _x	$\operatorname{Im} H_x$, Re H _x	dH _z /dt	dH ₂ /dt
Мощность	2–4 A		500-750 Вт		8000 Ам ²	6000 Ам ²	600 Ам ²	?	60 кАм ²	300 кАм ²
Высота п.	50-70 м 15-30 м 50-70 м			20-40 м	35-50 м 50 м		50—60 м			
Рзазнос	~ 10 км		300-500 м	150–300 м	30-120 м	125 м	16,2 м	20 м	35-50 м	150 м
Произв(д)	160 км 300 км		400 км				300 км		200 км	?
Масса ап.	200 кг	?	138 кг	?	300 кг	160 кг	160 кг	?	280 кг	260 кг
Чувствит.	0,03	0,001	0,01	0.02-0,03	50 ppm	500 ppm	100 ppm	10 ppm	30 ppm	50 ppm

geotechnologies-rus.com

История: ХХ век

Инструкция по электроразведке:..., аэроэлектроразведка, .../ М-во геологии СССР..., Ф.М. Каменецкий,..., В.Д. Новак,..., Г.В. Прис,..., Э.С. Сидельников,... Л.: Недра, 1984. – С. 165–193

- метод длинного кабеля
- метод радиокип (СДВР)
- метод дипольного индуктивного профилирования
- метод переходных процессов

История: XXI век

АО Геологоразведка: http://geolraz.com/

СДВР-АПУ Частоты: 10 – 25 кГц Измерения: Н, Е Погрешность: не более 10%

ДИП-4F Частоты: 128 Гц, 512 Гц, 2 кГц, 8 кГц Измерения: H_x , H_y , H_z , (H_b , H_a) Погрешность: не более 1000 ppm (кабель > 100 м)

ФГБУН Институт Геофизики УрО РАН: http://igfuroran.ru/

АММЗ-2 (БДК, НП) Частоты: 19,5 Гц, 78 Гц, 312 Гц. Измерения: Н_x, Н_y, Н_z Чувствительность: 0,3 пТл для 19,5 Гц

История: XXI век

АО ГНПП Аэрогеофизика: http://aerogeo.ru/

ДИП-А (1996 – 2000) Частоты: 273, 1092, 4368 Гц Измерения: H_x, H_y, H_z, (H_b, H_a)

ДИП-4А (2000 – 2005) Частоты: 130 Гц, 520 Гц, 2,1 кГц, 8,4 кГц Измерения: H_x, H_y, H_z, (H_b, H_a) Погрешность: не более 400 ppm (кабель 70 м)

ООО Геотехнологии: http://geotechnologies-rus.com/

ЕМ4Н (с 2006) Частоты: 130 Гц, 520 Гц, 2,1 кГц, 8,4 кГц Измерения: H_x, H_y, H_z, (Im, Re вторичного поля) Чувствительность: 50 – 200 ppm (кабель 70 м)

История: XXI век

ЗАО Аэрогеофизическая разведка http://aerosurveys.ru/

Импульс А-150 (А-250, А-450) Частота: 25(50) Гц Время спада: 0 – 15 мкс Измерения: dH_z/dt (до 3-х приемников) ДММ: 160 кАм² (250 кАм², 450 кАм²) Масса: 550 кг (внешняя подвеска) (?, ?)

ООО Геотехнологии: http://geotechnologies-rus.com/

ЭКВАТОР (с 2010) Частота: 77 Гц Измерения: H_x, H_y, H_z, dH_x/dt, dH_y/dt, dH_z/dt, (Im, Re вторичного поля) Чувствительность: 1 – 10 ppm (Tx-Rx 40 м) ДММ: 100 кАм² Масса: 150 кг (внешняя подвеска)

geotechnologies-rus.com

GEO

Technologies

ЦЕЛЬ:

Выделение геофизически значимой информации

ЗАДАЧИ:

Подавление влияния измерительных помех
- фильтрация

2) Исключение влияния измерительных погрешностей - калибровка

- контроль стабильности сигналов

3) Исключение влияния первичного поля

- разделение первичного и вторичного полей
- учет геометрических параметров: разнос по горизонтали и вертикали, высота, взаимная ориентация и т. п.

ВРЕМЕННЫЕ СИСТЕМЫ (TIME DOMAIN)

Эффективность

Приближение петли с током:

$$H(t) = G \exp\left(-\frac{t}{\tau}\right)$$

Влияние «геологического шума»

С ростом времени отклик от рудного тела все более превосходит отклик «геологического шума»

Рудное тело можно легко детектировать, если чувствительность приемника позволяет

ВРЕМЕННЫЕ СИСТЕМЫ (TIME DOMAIN)

ВРЕМЕННЫЕ СИСТЕМЫ (TIME DOMAIN)

ВРЕМЕННЫЕ СИСТЕМЫ (TIME DOMAIN)

geotechnologies-rus.com

Technologies

GEO

ВРЕМЕННЫЕ СИСТЕМЫ (TIME DOMAIN)

<u>Преимущества</u>

- эффективность при поиске проводящих объектов в присутствии перекрывающих отложений
- малое влияние первичного поля и геометрических факторов для off-time систем
- высокая чувствительность для off-time систем нет необходимости измерять первичное поле
- много частот в спектре возбуждения

Недостатки

- низкая чувствительность к контрастам в высокоомных областях
- необходимо учитывать ограниченность частотного диапазона
- нет первичного поля для off-time систем
- -высокие частоты имеют маленькую амплитуду

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

ДИП-А(Д)

Легендарные системы

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

Учет геометрии

geotechnologies-rus.com

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

Расчет первичного поля

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

R

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

130 Hz

--- 2080 Hz

4000

4700

 $520 \, \mathrm{Hz}$

8320 Hz

Расчет первичного поля

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

Спектральное представление

geotechnologies-rus.com

geotechnologies-rus.com

Детектирование триплета

$$\frac{1}{l} \int_{-l}^{l} f(t) \check{\boldsymbol{\chi}}(\omega) \boldsymbol{U}(t) e^{i\omega t} dt = \check{\boldsymbol{A}}_{0} = \check{\boldsymbol{\chi}}(\omega) \check{\boldsymbol{H}}$$
$$\frac{1}{l} \int_{-l}^{l} f(t) \check{\boldsymbol{\chi}}(\omega + \delta) \boldsymbol{U}(t) e^{i(\omega + \delta)t} dt = \check{\boldsymbol{A}}_{R} = \check{\boldsymbol{\chi}}(\omega + \delta) \boldsymbol{A}$$
$$\frac{1}{l} \int_{-l}^{l} f(t) \check{\boldsymbol{\chi}}(\omega - \delta) \boldsymbol{U}(t) e^{i(\omega - \delta)t} dt = \check{\boldsymbol{A}}_{L} = \check{\boldsymbol{\chi}}(\omega - \delta) \boldsymbol{A}$$

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

Стабилизация сигналов

$$A_{P}(t) = [\operatorname{Re}(Ae^{i(\omega-\delta)t}) + \operatorname{Re}(Ae^{i(\omega+\delta)t})]$$

Суммарный сигнал $\boldsymbol{U}(t) = [\boldsymbol{H}(t) + \operatorname{Re}(\boldsymbol{A} e^{i(\omega-\delta)t}) + \operatorname{Re}(\boldsymbol{A} e^{i(\omega+\delta)t})]$

Комплексные коэффициенты чувствительности измерительной системы

$$\mathbf{\check{\chi}}(\omega) = \begin{pmatrix} \check{\chi}_{xx}(\omega) & 0 & 0 \\ 0 & \check{\chi}_{yy}(\omega) & 0 \\ 0 & 0 & \check{\chi}_{zz}(\omega) \end{pmatrix}$$

Коэффициент на частоте ω

$$\check{\boldsymbol{\chi}}(\omega) \approx \frac{\check{\boldsymbol{\chi}}(\omega-\delta)+\check{\boldsymbol{\chi}}(\omega+\delta)}{2}$$

geotechnologies-rus.com

Technologies

GEO

ЧАСТОТНЫЕ СИСТЕМЫ (FREQUENCY DOMAIN)

<u>Недостатки</u>

- затруднен поиск рудных объектов
- в присутствии перекрывающих отложений
- большое влияние первичного поля и геометрических факторов
- меньшая чувствительность из-за необходимости измерять первичное поле
- мало частот в спектре возбуждения (по сравнению
- с временными системами)

<u> Преимущества</u>

- высокая чувствительность к контрастам в высокоомных областях
- очень и ирокий частотный диапазон
- первияное поле надежно измеряется
- высокие частоты имеют большую амплитуду
- можно контролировать геометрию по параметрам поля
- можно контролировать стабильность

КОМБИНИРОВАННЫЕ СИСТЕМЫ (ALL DOMAIN)

COTRAN

Легендарные системы

ЭКВАТОР

КОМБИНИРОВАННЫЕ СИСТЕМЫ (ALL DOMAIN)

Временное представление

КОМБИНИРОВАННЫЕ СИСТЕМЫ (ALL DOMAIN)

geotechnologies-rus.com

КОМБИНИРОВАННЫЕ СИСТЕМЫ (ALL DOMAIN)

Обработка данных в частотной и временной области

перекрывающий слой с удельным сопротивлением перекрывающий слой с удельным сопротивлением 2000 Ом м мощностью 200 м и основание с удельным 100 Ом м мощностью 20 м и основание 80 Ом м сопротивлением 10 Ом м 500 TD 2000 100 1000 Невязка, ррт/с 1200 100 100 Невязка, ррb 900 FD Невязка Невязка 70 10 600 100 1000 _и Невязка, ррb FD 100 Невязка, ррт/с 40 400 TD Удельное сопротивление ' 10 Перекрывающего слоя рес. Ом. м 20 100 10 WOLHOOTS HEREIGHEREICHERO DIOR down N Удельное сопротивление основания роск, ОМ. М 0.1 0.1 10 Удельное сопротивление основания р_{осн.}, Ом м

Современные подходы

Дисперсионная модель: $\zeta(\omega) = \rho \left| 1 - m_0 \left(1 - \frac{1}{1 + (i \,\omega \,\tau)^c} \right) \right|$

Chen, T., Smiarowski, A., and Hodges, G., 2015, Understanding airborne IP: First European Airborne Electromagnetic Conference, EAGE, Extended Abstracts.

Kaminskiy, V. and Viezzoli, A., 2017, Modelling induced polarisation effects in helicopter timedomain electromagnetic data: Field case studies: Geophysics, 82(2), 1-13.

Kwan, K., Legault, J., Johnson, I., Prikhodko, A., and Plastow, G., 2018, Interpretation of Cole-Cole parameters derived from helicopter TDEM data – Case studies: SEG Annual Meeting and Exhibition, Anaheim, Extended Abstracts, 1-6.

Современные подходы

Cole, K.S., and Cole, R.H., 1941, Dispersion and absorption in dielectrics I. Alternating current characteristics: Journal of Chemical Physics, 9, 341-351.

Cole, K.S., and Cole, R.H., 1942, Dispersion and absorption in dielectrics II. Direct current characteristics: Journal of Chemical Physics, 10, 98-105.

Pelton, W.H., Ward, S.H., Hallof, G., Sill, W.R., and Nelson, P.H., 1978. Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43(3), 588-609

Современные подходы

Kaminskiy, V. and Viezzoli, A., 2017, Modelling induced polarisation effects in helicopter timedomain electromagnetic data: Field case studies: Geophysics, 82(2), 1-13.

$$\zeta(\boldsymbol{\omega}) = \rho \left[1 - m_0 \left(1 - \frac{1}{1 + (i \, \boldsymbol{\omega} \, \boldsymbol{\tau})^c} \right) \right]$$

Современные подходы

Macnae, J., and Hine, K., 2016, Comparing induced polarisation responses from airborne inductive and galvanic ground systems: Tasmania: Geophysics, 81(6), E471-E479.

Работа комбинированной системы в Якутии

Анализ цепи с эффектом ИВП

Pelton, W.H., Ward, S.H., Hallof, G., Sill, W.R., and Nelson, P.H., 1978. Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43(3), 588-609

Модель Cole-Cole

Анализ цепи с эффектом ИВП

Pelton, W.H., Ward, S.H., Hallof, G., Sill, W.R., and Nelson, P.H., 1978. Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43(3), 588-609

Модель Cole-Cole

Как разделить L и C в модели Cole-Cole?

Анализ цепи с эффектом ИВП

Pelton, W.H., Ward, S.H., Hallof, G., Sill, W.R., and Nelson, P.H., 1978. Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43(3), 588-609

Модель Cole-Cole

BylernbdyfzМодель R L C R_C E

Как разделить L и C в модели Cole-Cole?

Анализ цепи с эффектом ИВП

Асимптотическая индуктивная модель

 $E = I\left(R + i\omega L - \frac{i}{\omega C}\right) \implies \frac{E\overline{I}}{I^2} = \left(R + i\omega L - \frac{i}{\omega C}\right)$

Закон Фарадея: $E \sim S \cdot i \, \omega B_n$ (первичное поле)

Закон Ампера:

 $B_{s} \sim S \cdot I$ (вторичное поле)

$$\frac{k \omega B_p}{B_s^2} (i \operatorname{Re} B_s + \operatorname{Im} B_s) = \left(R + i \omega L - \frac{i}{\omega C} \right),$$

Действительная часть:

 $R = \frac{k \omega B_p}{B_s^2} \operatorname{Im} B_s.$

Мнимая часть:

$$\frac{1}{\omega C} = \omega L - \frac{k \omega B_p}{B_s^2} \operatorname{Re} B_s.$$

Пример: Якутия

Пример: Якутия

- 5 mcs 10 mcs 20 mcs

35 mcs 55 mcs - 95 mcs - 150 mcs 250 mcs 400 mcs 650 mcs

- 848 Hz - 694 Hz

geotechnologies-rus.com

выводы

удущее

1. За комбинированными системами — будущее

- 2. Совместная интерпретация во временной и в частотной области дает определенные преимущества
- 3. Анализ ИВП в частотной области в ряде случаев позволяет получить оценку сопротивлений без применения модели Cole-Cole
- Примеры показывают, что кажущееся сопротивление, вычисленное по квадратурным компонентам слабо подвержено эффекту ИВП

СПИСОК ИСТОЧНИКОВ

Smith, R.S., Volkovitsky, A.K. Airborne Electromagnetic Prospecting Systems / Principles of Electromagnetic Methods in Surface Geophysics. Amsterdam: Elsevier B.V., 2014. P. 679-710.

Volkovitsky, A., Karshakov, E. Airborne EM Systems Variety: what is the Difference? / Papers of the 13th SAGA Biennial and 6th International AEM Conference, Mpumalanga, South Africa: AEM, 2013. P. 1-4.

Волковицкий, А.К., Каршаков, Е.В., Попович, В.В. Компенсация влияния наведенных токов в низкочастотной индуктивной аэроэлектроразведочной системе ЕМ-4Н / . Екатеринбург: -, 2008. С. 40-43.

Karshakov, E., Volkovitsky, A., Tkhorenko, M. Receiver Positioning by Means of EM Field Measurements / Papers of the 13th SAGA Biennial and 6th International AEM Conference, Mpumalanga, South Africa: AEM, 2013. P. 1-4.

Karshakov, E., Moilanen, J. Combined interpretation of time domain and frequency domain data / Proceedings of the 7th International Workshop on Airborne Electromagnetics, Kolding, Denmark: Aarhus University, 2018. P. 1-3.

Karshakov, E., Moilanen, J. Overcoming Airborne IP in Frequency Domain: Hopes and Disappointments / Extended Abstracts of the 16 th SAGA Biennial Conference & Exhibition, Durban, South Africa: SAGA, 2019. P. 1-4.